• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • Akademik Arşiv / Institutional Repository
  • Sağlık Hizmetleri Meslek Yüksekokulu / Vocational School of Health Services
  • Tıbbi Laboratuvar Teknikleri Programı / Medical Laboratory Tecniques Program
  • View Item
  •   DSpace Home
  • Akademik Arşiv / Institutional Repository
  • Sağlık Hizmetleri Meslek Yüksekokulu / Vocational School of Health Services
  • Tıbbi Laboratuvar Teknikleri Programı / Medical Laboratory Tecniques Program
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Drosophila as a suitable in vivo model in the safety assessment of nanomaterials

Thumbnail
Date
2022
Author
Demir, Eşref
Turna Demir, Fatma
Marcos, Ricard
Metadata
Show full item record
Abstract
Nanotechnology is often praised as the future technology that will revolutionize the world as we know it, because nanomaterials (NMs) offer numerous practical applications for a wide range of fields such as medicine, cosmetics, food preservation, paintings, and industry. Produced by nanotechnology, NMs are in the front line of this innovative applied science, while nanoparticles (NPs) refer to materials existing in the natural world and measuring 1-100 nanometers in at least one dimension. The recent surge in the number of endeavors to utilize NMs makes it imperative to identify hazards and risk factors involved as we have yet to know harmful effects of this uncharted territory on the environment and public health. While researchers generally choose to carry out in vitro experiments in an effort to assess toxicity of NMs, in vivo approaches seem to yield better evidence that is more relevant to risk assessment. In that context, Drosophila melanogaster stands out as the most dynamic model organism for biological experiments, since 75% of the genes responsible for human diseases are known to have homologs in D. melanogaster, which facilitates research into various pathologies. This book chapter aims to present the full picture of studies on separate NMs that employed in vivo approaches (toxicity, genotoxicity, internalization, cell uptake, tissue distribution, etc.) using D. melanogaster, attempting to offer an in-depth analysis of risks involved in exposure to NMs, as well as many advantages of other animal models used by nanogenotoxicology studies.
URI
http://hdl.handle.net/20.500.12566/1182
Collections
  • Tıbbi Laboratuvar Teknikleri Programı / Medical Laboratory Tecniques Program

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 




sherpa/romeo


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeABU AuthorWOSScopusPubMedTRDizinErişimThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeABU AuthorWOSScopusPubMedTRDizinErişim

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


|| Library || Antalya Bilim Üniversitesi || OAI-PMH ||

Antalya Bilim Üniversitesi Kütüphane ve Dokümantasyon Müdürlüğü, Antalya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: acikerisim@antalya.edu.tr

DSpace Repository:


DSpace 6.4-SNAPSHOT

Gemini Bilgi Teknolojileri A.Ş tarafından destek verilmektedir.